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Abstract

We demonstrate that data clustering amounts to a dynamic process of
self-aggregation in which data objects move towards each other to form
clusters, revealing the inherent pattern of similarity. Self-aggregation is
governed by connectivity and occurs in a space obtained by a nonlinear
scaling of principal component analysis (PCA). The method combines di-
mensionality reduction with clustering into a single framework. It can apply
to both square similarity matrices and rectangular association matrices.

1 Introduction

Organizing observed data into groups or clusters is the first step in discover-
ing coherent patterns and useful structures. This unsupervised learning process
(data clustering) is frequently encountered in science, engineering, commercial
data mining and information processing. There exists a large number of data
clustering methods for different situations. In recent decades, unsupervised learn-
ing methods related to the principal component analysis (PCA)[13] has being
increasingly widely used: the low-dimensional space spanned by the principal
components is effective in revealing structures of the observed high-dimensional
data. PCA is a coordinate rotation such that the principal components span
the dimensions of largest variance. The linear transformation preserves the local
properties and global topologies, and can be efficiently computed. However, PCA
is not effective in revealing nonlinear structures [9, 15, 21, 18, 19]. To overcome
the short-comings of linear transformation of PCA, nonlinear PCAs have been
proposed, such as principal curves [8], auto-associative networks [15], and kernel
PCA [19]. But they do not posses the self-aggregation property. Recently, nonlin-
ear mappings [21, 18] have been developed. But they are not primarily concerned
with data clustering.
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Here we introduce a new concept of self-aggregation and show that a non-
linear scaling of PCA leads to a low-dimensional space in which data objects
self-aggregate into distinct clusters, revealing inherent patterns of similarity, in
contrast to existing approaches. Thus data clustering becomes a dynamic process,
performing nonlinear dimensionality reduction and cluster formation simultane-
ously; the process is governed by the connectivity among data objects, similar to
dynamic processes in recurrent networks [12, 10].

2 Scaled Principal Components

Associations among data objects are mostly quantified by a similarity metric. The
scaled principal component approach starts with a nonlinear (non-uniform) scaling
of the similarity matrix W = (wij). where wij = wji ≥ 0 measures the similarity,
association, or correlation between data objects i, i. The scaling factor D = (di) is
a diagonal matrix with each diagonal element being the sum of the corresponding
row (di =

∑
j wij). Noting that W = D1/2(D−1/2WD−1/2)D1/2, we apply PCA

or spectral decomposition on the scaled matrix Ŵ = D−1/2WD−1/2 instead of
on W directly, leading to

W = D1/2(
∑

k

zkλkz
T
k )D1/2 = D

∑

k

qkλkq
T
k D (1)

Here we call qk = D−1/2zk the scaled principal components (qk, zk are n-vectors1

); they are obtained by solving the eigenvalue system

D−1/2WD−1/2z = λz. (2)

or equivalently, solving
Wq = λDq. (3)

Self-aggregation

The K-dimensional space spanned by the first K scaled principal components
(SPCA space) has an interesting self-aggregation property enforced by within-
cluster association (connectivity). This property is first noted in [2].

First, we consider the case where clusters are well separated, i.e., no overlap
(no connectivity) exists among the clusters.
Theorem 1. When overlaps among K clusters are zero, the K scaled principal
components (q1,q2, · · · ,qK) = QK get the same maximum eigenvalue: λ1 =
· · · = λK = 1. Each qk is a multistep (piecewise-constant) function (assuming
objects within a cluster are indexed consecutively). In the SPCA space spanned
by QK , all objects within the same cluster self-aggreate into a single point. ⊓–

1Here bold-face lowercase letters are vectors of size n, with qk(i) as the ith element of qk.
Matrices are denoted by uppercase letters.
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Proof. Now W = (Wpq) is block diagonal: Wpq = 0, p 6= q. Assume K = 3.
Define basis vectors:

x(k) = (0 · · · 0, D
1/2
kk ek, 0 · · · 0)T , (4)

where spq =
∑

i∈Gp

∑
j∈Gq

wij , Dpq = diag(Wpqeq), and ek = (1, · · · , 1)T with

the size of cluster Gk. x(1),x(2),x(3) are eigenvectors of Eq.(2) with λ(0) = 1. For
any K real numbers c = (c1, c2, · · · , cK)T , z = XKc = c1x

(1) + · · · + c3x
(K) is

also an eigenvector of Eq.(2) with λ(0) = 1. The corresponding scaled principal
component

q = D−1/2z = (c1e1/s
1/2
11 , · · · , cKeK/s

1/2
KK)T , (5)

is a K-step piece-wise constant function. Clearly, all data objects within the
same cluster have identical elements in q. The coordinate of object i in the K-
dim SPCA space is ri = (q1(i), · · · , qK(i))T . Thus objects within a cluster are
located at (self-aggregate into) the same point. ⊓–

Scaled principal components are not unique when no overlap between clusters
exist. For a set of K scaled principal components (q1, · · · ,qK) = QK , and another
arbitrary K×K orthonormal matrix R, QKR are also a vaild set of scaled principal
components. However, the expansion of Eq.(1) is unique, because qkq

T
k is unique.

Thus, self-aggregation of cluster member is equivalent to the fact that QKQT
K has

a block diagonal structure,

QKQT
K = diag(e1e

T
1 /s11, · · · , eKeT

K/sKK), (6)

where elements within the same diagonal block all have the same value. In graph
theory, the scaled PCA represents each cluster as a complete graph (clique). For
this reason, the truncated SPCA expansion

WK = D

K∑

k=1

qkq
T
k D = DQKQT

KD (7)

is particularly useful in discovering cluster structure. Here we retain only first K
terms and set λk = 1 which is crucial for enforcing the cluster structure later.

Second, we consider the case when overlaps among different clusters exist. We
apply perturbation analysis by writing Ŵ = Ŵ (0) + Ŵ (1), where Ŵ (0) is the
similarity matrix for the zero-overlap case considered above, and Ŵ (1) accounts
for the overlap among clusters and is treated as a perturbation.

Theorem 2. At the first order, the K scaled principal components and their
eigenvalues have the form

q = D−1/2XKy, λ = 1 − ζ,

where y and ζ satisfy the eigensystem Γy = ζy. The matrix Γ has the form
Γ = Ω−1/2 Γ̄ Ω−1/2, where

Γ̄ =




h11 −s12 · · · −s1K

−s21 h22 · · · −s2K
...

... · · ·
...

−sK1 −sK2 · · · hKK


 (8)
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hkk =
∑

p6=k skp(p sums over all indices except k) and Ω = diag(s11, · · · , sKK).

This analysis is accurate to order ||Ŵ (1)||2/||Ŵ (0)||2 for eigenvalues and to order

||Ŵ (1)||/||Ŵ (0)|| for eigenvectors. ⊓–

The proof is a bit involved and is omitted here. Several features of SPCA can be
obtained from Theorem 2:
Corollary 1. SPCA expansion WK = DQKQT

KD = D1/2XKXT
KD1/2 has the

same block diagonal form of Eq.(6) within the accuracy of Theorem 1.
Corollary 2. The first scaled principal component is q1 = D−1/2XKy1 =
(1, · · · , 1)T with λ1 = 1. λ1 and q1 are also the exact solutions to the origi-
nal Eq.(3).
Corollary 3. The second principal component for K = 2 is

q2 = D−1/2X2y2 = (

√
s22

s11
e1,−

√
s11

s22
e2)

T . (9)

The eigenvalue is
λ2 = 1 − (s12/s11 + s12/s22). (10)

The diagonal block structure of the SPCA expansion WK (Corollary 1) implies
that objects within the same cluster will self-aggregate as in Theorem 1. We can
also see this more intuitively. A scaled principal component q = (q(1), · · · , q(n))T ,
as an eigenvector of Eq.(3), can be equivalently obtained by minimizing the ob-
jective function

min
q

∑
ij wij [q(i) − q(j)]2

∑
i di[q(i)]2

. (11)

Thus adjacent objects have close coordinates such that [q(i) − q(j)]2 is small for
non-zero wij : the larger wij is, the closer q(i) is to q(j).

To illustrate the above analysis, we provide the following example and appli-
cations.
Example 1. A dataset of 3 clusters with substantial random overlap between
the clusters. All edge weights are 1. The similarity matrix and results are shown
in Fig.1, where nonzero matrix elements are shown as dots. The exact λ2 and
approximate λ̃2 from Theorem 2 are close:

λ2 = 0.300, λ̃2 = 0.268.

The SPCA expansion WK = DQKQT
KD reveals the correct block structure clearly

due to self-aggregation: in WK connections between different clusters are substan-
tially suppressed while connections within clusters are substantially enhanced.
Thus WK is much sharper than the original weight matrix W . In SPCA space
using coordinates ri = (q1(i), · · · , q3(i))

T , objects within the same cluster become
almost on top of each other (not shown) as the result of self-aggregation.

Application 1. In DNA micro-array gene expression profiling, responses of thou-
sands of genes from tumor tissues are simultaneously measured. We SPCA to gene
expression profiles of lymphoma cancer data from Alizadeh et al. [1]. Discovered
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Figure 1: Left: similarity matrix W . Diagonal blocks represent weights inside
clusters and off-diagonal blocks represent overlaps between clusters. Right: Com-
puted WK .

clusters clearly correspond to normal or cancerous subtypes identified by human
expertise. 100 most informative genes (defines the Euclidean space) are selected
out of the original 4025 genes based on the F -statistic. Pearson correlation cij

is computed and similarity wij = exp(cij/〈c〉), where 〈c〉 = 0.1. Three cancer
and three normal subtypes are shown with symbols explained in Figure 2B (the
number of samples in each subtype is shown in parentheses). This is a difficult
problem due to large variances in cluster sizes. Self-aggregation is evident in
Figures 2B and 2C.

Besides the self-aggregation, the nonlinearity in SPCA can alter the topology
in a useful way to reveal structures which are otherwise difficult to detect using
standard PCA. Thus the SPCA space is a more useful space to explore the struc-
tures.
Application 2. 1000 points form two interlocking rings (but not touching each
other) in 3D Euclidean space. The similarities between data points are com-
puted same as in Application 1. In SPCA space, rings are separated. Objects
self-aggregate into much thinner rings (shown in right panel of Figure 2).

Dynamic aggregation

The self-aggregation process can be repeated to obtain sharper clusters. WK

is the low-dimensional projection that contains the essential cluster structure.
Combining this structure with the original similarity matrix, we obtain a new
similarity matrix containing sharpened cluster information:

W (t+1) = (1 − α)W
(t)
K + αW (t), (12)

where W
(t)
K is the SPCA representation (Eq.7) of W (t), the weight matrix at t-th

iteration, α = 0.5, and W (1) = W .

Applying SPCA on W (2) leads to further aggregation (see Figure 2C). The
eigenvalues of the 1st and 2nd SPCA are shown in the insert in Figure 1C. As
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Figure 2: Left: Gene expression profiles in original Euclidean space (A), in SPCA
space (B), and in SPCA space after one iteration of Eq.13 (C). In all 3 panels,
objects are plotted in 2D-view spanned by the first two PCA components. Cluster
structures become clearer due to self-aggregation. The insert in (C) shows the
eigenvalues of the 1st and 2nd SPCA.
Right: Data objects in 3D Euclidean space (top) and in SPCA space (bottom).

iteration proceeds, a clear gap is developed, indicating that clusters becoming
more separated.

Noise reduction

SPCA representation WK has noises. For example, WK has sometimes neg-
ative weights (WK)ij whereas we expect them to be nonnegative for learning.
However, a nice property of SPCA provides a solution. The structure of WK is
determined by QQT . When data contains K well separated clusters, QQT has
a diagonal block structure and every elements in the block are identical (Eq.6).
When clusters are not well separated but can be meaningfully distinguished, QQT

has approximately the same block-diagonal form (Corollary 1). This property al-
lows us to interpret QQT as the probability that two objects i, j belong to the
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same cluster:
pij = (WK)ij/(WK)

1/2
ii (WK)

1/2
jj .

which is the same as pij = (QQT )ij/(QQT )
1/2
ii (QQT )

1/2
jj . To reduce noise in the

above dynamic aggregation, we set

(WK)ij = 0 if pij < β, (13)

where 0 < β < 1 and we chose β = 0.8. Noise reduction is an integral part
of SPCA. In general, the method is stable: the final results are insensitive to
α, β. The above dynamic aggregation process repeatedly projects data into SPCA
space and the self-aggregation forces data objects towards the attractors of the
dynamics. The attractors are the desired clusters which are well separated and
their principal eigenvalues approach 1 (see insert in Fig.1C). Usually, after one or
two iterations of self-aggregation in SPCA, the cluster structure becomes evident.

3 Mutual Dependence

In many learning and information processing tasks, we look for inter-dependence
among different aspects (attributes) of the same data objects. In gene expression
profiles, certain genes express strongly when they are from tissues of a certain
phenotype, but express mildly when they are from other phenotypes[1]. Thus it is
meaningful to consider gene-gene correlations as characterized by their expressions
across all tissue samples, in addition to sample-sample correlations we usually
study.

In text processing, such as news articles, the content of an article is determined
by the word occurrences, while the meaning of words can be inferred through their
occurrences across different news articles. This kind of association between a data
object (tissues, news articles) and its attributes (expressions of different genes,
word occurrences) is represented by the asymmetric data association matrix. Here
we restrict our consideration to the cases where all entries of assoication matrix
B are non-negative, and therefore can be viewed as the probability of association
(conditional probability) between column objects (news articles or tissue sam-
ples) and row objects (words or genes). This kind of data is sometimes called
a contingency table. In graph theory, B is the weight matrix for a bipartite
graph. Clustering row and column objects simultaneously amounts to clustering
the bipartite graph as shown in Figure 3.

SPCA applies to these inter-dependence problems (bipartite graphs) as well.
We introduce nonlinear scaling factors, diagonal matrices Dr (each element is
the sum of a row) and Dc (each element is the sum of a column). Let B =

D
1/2
r (D

−1/2
r BD

−1/2
c )D

1/2
c . Applying PCA on B̂ = D

−1/2
r BD

−1/2
c , we obtain

B = D1/2
r (

∑

k

ukλkv
T
k )D1/2

c = Dr

∑

k

fkλkg
T
k Dc. (14)

Scaled principal components are fk = D
−1/2
r uk for row objects and gk = D

−1/2
c vk

for column objects.
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Figure 3: A bipartite graph with row-nodes and column-nodes. The dashed line
indicates a possible clustering.

Scaled principal components here have the same self-aggregation and related
properties as in §2. First, the singular vectors uk and vk and the singular values
λk are determined though

(B̂B̂T )u = λ2u, (B̂T B̂)v = λ2v. (15)

They can be viewed as simultaneous solutions to Eq.(3), with

W =

(
B

BT

)
, D =

(
Dr

Dc

)
, z =

(
u

v

)
,

as can be easily verified. Therefore, all conclusions of Theorems 1 and 2 for
undirect graphs can readily extended over to the bipartite graph case here.

When K clusters are well separated (no overlap among clusters), we have
Theorem 3. For well separated clusters, row objects within the same cluster will
self-aggregate in the SPCA space spanned by (f1, · · · , fK) = FK , while column
objects within the same cluster will self-aggregate in the SPCA space spanned by
(g1, · · · ,gK) = GK . ⊓–

When clusters overlap, a theorem almost identical to Theorem 2 can be es-
tablished for bipartite graphs. The corollaries following Theorem 2 can be nearly
identically extended to the bipartite graphs. We briefly summarize the results
here. Let

qk =

(
fk
gk

)
= D− 1

2

(
uk

vk

)
, QK =

(
FK

GK

)
, and QKQT

K =

(
FKFT

K FKGT
K

GKFT
K GKGT

K

)
.

The low-dimensional SPCA expansion BK = Dr

∑K
k=1 fkg

T
k Dc = DrFKGT

KDc

gives the sharpened association between words and documents, the diagonal block
structure of FKFT

K gives the clusters on row objects (words) while the diagonal
block structure of GKGT

K simultaneously gives the clusters on column objects
(news articles). We note that Eqs.(14,15) rediscover the correspondence analysis
[6] in multivariate statistics from the SPCA point of view.

Example 2. We apply the above analysis to a bipartite graph example with
association matrix shown in Fig.4. The bipartite graph has two dense clusters
with large overlap between them. The SPCA representations are computed and
shown in Fig.4. FKGT

K gives a sharpened association matrix where the overlap
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between clusters (off-diagonal blocks) is greatly reduced. FKFT
K reveals the cluster

structure for row objects and GKGT
K reveals the cluster structure for column

objects.
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Figure 4: Left-top: association (weight) matrix of a bipartite graph of 2 dense clus-
ters (diagonal blocks) with random overlaps (off-diagonal blocks). Left-bottom:
FKGT

K for sharpened associations. Middle: GKGT
K for clustering column objects.

Right: FKFT
K for clustering row objects.

Application 4. Clustering internet newsgroups (see Figure 5). (The newsgroup
dataset is from www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html.)
Five newsgroups are used in the dataset (listed in upper right corner with cor-
responding color). 100 news articles are randomly chosen from each newsgroup.
From them 1000 words selected. Standard tf.idf weighting are used. Each docu-
ment (column) is normalized to one. The resulting word-to-document association
matrix is the input matrix B. As shown in Figure 5, words aggregate in SPCA
word space (spanned by FK) while news articles are simultaneously clustered in
SPCA document space (spanned by GK) shown by the projection matrix GGT

(the insert). One can see that GGT indicates some overlap between computer

graphics and space science, which is consistent with the relative closeness of the
two corresponding word clusters in word space. The accuracy of clustering is
86%. (We also computed the cosine similarity W = BT B and use the method
in §2 to obtain clusters with 89% accuracy.) This dataset has been extensively
studied in [22]; the standard Kmeans clustering gives about 66% accuracy, while
two improved methods get 76-80% accuracy.

4 Discussions

In this paper, we assume that objects belonging to the same cluster are consec-
utively indexed. However, the SPCA framework is independent of the indexing.
The diagonal block structure of SPCA representation as the result of cluster mem-
ber self-aggregation merely indicates the fact that connectivities between different

9



−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

−0.1

−0.05

0

0.05

0.1

tiff

algorithm

directory

postscript

xv demo

linux

jpeg

gif
comp

polygon

unix

version

code
user

bmw
rider

horn

speedy

karr
honda

ama

biker

nec
behanna
seca

ati driver

insurance

cage

fan

hitter
umpire

cubs

sabo

bat

dodger
sox

alomar

career

lopez

cox

batter

catcher

fielder

physicist

burst

balloon

pluto

ozon

spacewalkslew

unified

alaska
drag

aurora
rocketry

kelvin
launch

comet

armenian
turkish

jew

muslimbullock palestinian

genocide

azerbaijan
israel

bosnian
serb

greece
christian

ottoman

terror

1. comp.graphics

2. rec.motorcycles

3. rec.sport.baseball

4. sci.space

5. talk.politics.mideast

Projection Matrix for newsgroup articles

Figure 5: Words self-aggregate in SPCA word space while internet newsgroups
articles are simultaneously clustered. Shown are the top 15 most frequently oc-
curring words from each discovered cluster. (Several words in motorcycles are
brand names, and several words in baseball are players’ names.) The insert shows
the projection matrix GGT on clustering news articles.

clusters are substantially suppressed while connectivities within a cluster are sub-
stantially enhanced. Our main results, in essence, is that if cluster structures in
the original dataset can be meaningfully distinguished, such as Figures 1,2, SPCA
makes them much more well-separated so that clusters can be easily detected ei-
ther by direct visual inspection or by a standard clustering method such as the
K-means algorithm.

The key to understand SPCA is the nonlinear scaling factor D. Columns and
rows of the similarity matrix are scaled inversely proportional to their weights
such that all K principal components get the same maximum eigenvalue of one.
This happens independent of cluster sizes. leading to desirable consequences. (i)
Outliers are usually far away from other objects and often skew the statistics
(means, covariance, etc) in original Euclidean space. However, in SPCA we focus
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on similarity matrix (instead of distance matrix). Outliers contribute very little
to the quantities in Eqs.(4,8) thus do not adversely affects SPCA. But, their small
similarities with other objects force them to appear as independent clusters and
thus can be easily detected. (ii) Unbalanced clusters (in which the number of
objects in each cluster varies substantially) are usually difficult to discover using
many other clustering methods, but can be effectively dealt with in SPCA due
to the nonlinear scaling. Directly applying PCA on W will be dominated by the
large clusters and no self-aggregation will occur.

The scaled PCA has a connection to spectral graph partitioning and clus-
tering [4, 5, 17, 7, 20, 3, 16]. Given a weighted graph G where the weight wij

is the similarity between nodes i, j, one wish to partition it into two subgraphs
(clusters) A, B according to the min-max clustering principle: the (overlapping)
similarity between A and B is minimized while similarities within A or B are
maximized[3]. The overlap between A and B is the sum of weights between A
and B, s(A, B) =

∑
i∈A,j∈B wij . The similarity within cluster A is s(A, A) (sum

of all edge weights within A). The similarity within cluster B is s(B, B). Thus the
clustering principle of minimizing s(A, B) while maximizing s(A, A) and s(B, B)
leads to the min-max cut objective function[3],

JMMC =
s(A, B)

s(A, A)
+

s(A, B)

s(B, B)
. (16)

The clustering result can be represented by an indicator vector q, where q(i) = a
or -b depending on node i ∈ A or B. (a and b are positive constants.) If one
relaxes q(i) from discrete indicators to continuous values in (−1, 1), the solution
q for minimizing JMMC is given by the eigenvector of (D − W )q = ζDq, which
is exactly Eq.3 with λ = 1 − ζ. This further justifies our SPCA approach for
unsupervised learning. In addition, the desired clustering indicator vector q is
precisely recovered in Eq.9 with a =

√
s22/s11 and b =

√
s11/s22 due to Theorem

1; minimizing the min-max cut objective of Eq.16 is equivalent to maximizing the
eigenvalue of the second SPCA component given in Eq.10. All these indicate that
SPCA is a principled and coherent framework for data clustering. One drawback
of the method is the computation is in general O(n2).

In self-aggregation, data objects move towards each other guided by connec-
tivity which determines the attractors. This is similar to the self-organizing map
[14, 11], where feature vectors self-organize into a 2D feature map while data ob-
jects remain fixed. All these have a connection to recurrent networks [12, 10]. In
Hopfield network, features are stored as associative memories. In more compli-
cated networks, connection weights are dynamically adjusted to learn or discover
the patterns, much like the dynamic aggregation of Eq.(12). Thus it may be
possible to construct a recurrent network that implements the self-aggregation.
In this network, high dimensional input data are converted into low-dimensional
representations in SPCA space and cluster structures emerge as the attractors of
dynamics.
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